• Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements

Featured Articles

    Archives

    March 2023
    February 2023
    September 2022
    August 2022
    April 2022
    March 2022
    December 2021
    October 2021
    September 2021

    Categories

    All
    Actuators
    Approximation
    Artificial Neural Networks
    Bifurcation
    Boundary Conditions
    Boundary-value Problems
    Contact
    Continuation Methods
    Control
    Co-simulation
    Co-simulation Interface
    Damping
    Density
    Dynamic Models
    Dynamics
    Dynamic Systems
    Error Estimator
    Errors
    Exact Mode Shapes
    Exoskeleton Devices
    Friction
    Fuzzy Logic
    Geometry
    Heat
    Kinematics
    Limit Cycles
    Loaded Beam
    Manifolds
    Manipulators
    Midplane Stretching
    Multibody Dynamics
    Multibody Systems
    Multiphysics
    Multirate
    Noise
    Nonlinear Dynamical Systems
    Nonlinear Frequency
    Nonlinear Vibration
    Nonlinear Vibration Absorber
    NVA
    Origami
    Parallelization
    Parametrization
    Perturbation Methods
    Probability
    Prostheses
    Railroad Dynamics
    Real-time Dynamics Simulation
    Resonance
    Ships
    Simulation
    Solver Coupling
    Space
    Stability
    Time Delay Systems
    Topology
    Variable Macro-step Size
    Vehicular Dynamics
    Vibration
    Waves

    RSS Feed

Back to Blog

Computationally Efficient Simulations of Stochastically Perturbed Nonlinear Dynamical Systems

8/2/2022

 
Thomas Breunung and Balakumar Balachandran, Computationally Efficient Simulations of Stochastically Perturbed Nonlinear Dynamical Systems, J. Comput. Nonlinear Dynam. Sep 2022, 17(9): 091008, https://doi.org/10.1115/1.4054932
Picture
Dynamical system models can be used to describe natural and engineering systems that evolve in time. Furthermore, most natural processes are inherently nonlinear and face uncertainties stemming from, for example, parameter variations or unknown environmental conditions. Models used to describe such systems can be grouped under stochastic, nonlinear dynamical systems. Here, the authors build on numerical integration routines meant for deterministic systems and present an algorithm to compute responses of stochastic nonlinear systems. With this approach, the well-developed deterministic tools can be used in stochastic system simulations. The algorithm’s performance is demonstrated by using numerical examples, including a system with two-hundred dimensions. This algorithm can be used to compute sample paths of stochastic dynamical systems about two orders of magnitude faster compared to established numerical stochastic integration routines. In addition, a deduced Gaussian kernel enables computations of the time-varying probability density function. With this approach, one can reduce the sample size significantly and thus enable computational investigations of higher dimensional systems that are infeasible with currently available methods. The algorithm discussed here can be used as a basis for computationally efficient investigations into stochastic dynamical systems over long time spans.
0 Comments
Read More
Picture
JOURNAL OF COMPUTATIONAL and
​NONLINEAR DYNAMICS
COMPANION

QUICK LINKS

Submit Paper
Author Resources
Digital Collection
Indexing Information
Order Journal
Announcements and Call for Papers
Copyright © 2021 Journal of Computational and Nonlinear Dynamics