• Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements

Featured Articles

    Archives

    May 2025
    April 2025
    January 2025
    December 2024
    October 2024
    September 2024
    August 2024
    February 2024
    October 2023
    September 2023
    July 2023
    May 2023
    March 2023
    February 2023
    September 2022
    August 2022
    April 2022
    March 2022
    December 2021
    October 2021
    September 2021

    Categories

    All
    Actuators
    Approximation
    Artificial Neural Networks
    Attractors
    Bifurcation
    Boundary Conditions
    Boundary-value Problems
    Cables
    Contact
    Continuation Methods
    Control
    Co-simulation
    Co-simulation Interface
    Damping
    Delay Differential Equations
    Delays
    Density
    Displacement
    Dynamic Models
    Dynamics
    Dynamic Systems
    Eigenvalues
    Error Estimator
    Errors
    Exact Mode Shapes
    Exoskeleton Devices
    Friction
    Fuzzy Logic
    Galerkin Method
    Geometry
    Heat
    Heat Transfer
    Homoclinic Orbits
    Kinematics
    Limit Cycles
    Loaded Beam
    Machine Learning
    Manifolds
    Manipulators
    Midplane Stretching
    Multibody Dynamics
    Multibody Systems
    Multiphysics
    Multirate
    Noise
    Nonlinear Dynamical Systems
    Nonlinear Frequency
    Nonlinear Vibration
    Nonlinear Vibration Absorber
    NVA
    Origami
    Parallelization
    Parametrization
    Pendulum
    Perturbation Methods
    Probability
    Prostheses
    Railroad Dynamics
    Real-time Dynamics Simulation
    Reinforcement Learning
    Resonance
    Robots
    Ships
    Simulation
    Solver Coupling
    Space
    Stability
    Time Delay Systems
    Topology
    Variable Macro-step Size
    Vehicular Dynamics
    Vibration
    Waves

    RSS Feed

Back to Blog

Data Driven Approach to Determine Linear Stability of Delay Differential Equations Using Orthonormal History Functions

2/5/2024

 
Sankalp Tiwari, Junaidvali Shaik, and C. P. Vyasarayani
J. Comput. Nonlinear Dynam. Feb 2024, 19(2): 021002 
​https://doi.org/10.1115/1.4064251
​Delayed systems are those in which the present dynamics is governed by what happened in the past. They are encountered in manufacturing, biology, population dynamics, control systems, etc. Determining stability of such systems is an important and difficult problem. In the existing works, stability is determined by assuming the governing differential equation. However, the equation may not be known or difficult to obtain. Unlike existing works, our method determines the linear stability of a delayed system using its response to a few known inputs. In particular, our method does not require or assume the differential equation governing that system. The only system information we use is its largest delay time, and the only assumption we make about the underlying equation is that its coefficients are either constant or time-periodic. Our approach involves giving the first few functions of an orthonormal polynomial basis as input and measuring/computing the corresponding responses to generate a state transition matrix, whose largest eigenvalue determines the stability. We demonstrate our method's correctness, efficacy, and convergence by studying four candidate DDEs with differing features. Importantly, we show that our approach is robust to noise in measurement, thereby establishing its suitability for practical applications.
Picture
full paper
0 Comments
Read More
Picture
JOURNAL OF COMPUTATIONAL and
​NONLINEAR DYNAMICS
COMPANION

QUICK LINKS

Submit Paper
Author Resources
Digital Collection
Indexing Information
Order Journal
Announcements and Call for Papers
Picture
Copyright © 2021 Journal of Computational and Nonlinear Dynamics