• Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements

Featured Articles

    Archives

    April 2025
    January 2025
    December 2024
    October 2024
    September 2024
    August 2024
    February 2024
    October 2023
    September 2023
    July 2023
    May 2023
    March 2023
    February 2023
    September 2022
    August 2022
    April 2022
    March 2022
    December 2021
    October 2021
    September 2021

    Categories

    All
    Actuators
    Approximation
    Artificial Neural Networks
    Attractors
    Bifurcation
    Boundary Conditions
    Boundary-value Problems
    Cables
    Contact
    Continuation Methods
    Control
    Co-simulation
    Co-simulation Interface
    Damping
    Delay Differential Equations
    Delays
    Density
    Displacement
    Dynamic Models
    Dynamics
    Dynamic Systems
    Eigenvalues
    Error Estimator
    Errors
    Exact Mode Shapes
    Exoskeleton Devices
    Friction
    Fuzzy Logic
    Galerkin Method
    Geometry
    Heat
    Heat Transfer
    Homoclinic Orbits
    Kinematics
    Limit Cycles
    Loaded Beam
    Machine Learning
    Manifolds
    Manipulators
    Midplane Stretching
    Multibody Dynamics
    Multibody Systems
    Multiphysics
    Multirate
    Noise
    Nonlinear Dynamical Systems
    Nonlinear Frequency
    Nonlinear Vibration
    Nonlinear Vibration Absorber
    NVA
    Origami
    Parallelization
    Parametrization
    Pendulum
    Perturbation Methods
    Probability
    Prostheses
    Railroad Dynamics
    Real-time Dynamics Simulation
    Reinforcement Learning
    Resonance
    Robots
    Ships
    Simulation
    Solver Coupling
    Space
    Stability
    Time Delay Systems
    Topology
    Variable Macro-step Size
    Vehicular Dynamics
    Vibration
    Waves

    RSS Feed

Back to Blog

Steady-State Rotary Periodic Solutions of Rigid and Flexible Mechanisms With Large Spatial Rotations Using the Incremental Harmonic Balance Method for Differential-Algebraic Equations

9/17/2024

 
R. Ju, S. M. Yang, H. Ren, W. Fan, R. C. Ni, and P. Gu
J. Comput. Nonlinear Dynam. Dec 2024, 19(12): 121001
https://doi.org/10.1115/1.4066221

​Steady-state rotary periodic responses of mechanisms lead to stress cycling in flexible structures or connecting joints, which in turn can result in structural fatigue. A general approach is developed to study rotary periodic solutions of rigid and flexible mechanisms with large spatial rotations based on the incremental harmonic balance (IHB) method. The challenge in analyzing such dynamic systems emanates from the noncommutativity of the spatial rotation and the nonsuperposition nature of the rotational coordinates. The generally used rotational coordinates, such as Euler angles, cannot be expanded into Fourier series, which prevents direct usage of the IHB method. To overcome the problem, the natural coordinates method and absolute nodal coordinate formulation (ANCF) are used herein for the dynamic modeling of the rigid and flexible bodies, respectively. The absolute positions and gradients are used as generalized coordinates, and rotational coordinates are naturally avoided. Equations of motions of the system are differential-algebraic equations (DAEs), and they are solved by the IHB method to obtain the steady-state rotary periodic solutions. The effectiveness of the proposed approach is verified by the simulation of rigid and flexible examples with spatial rotations. The approach is general and robust, and it has the potential to be further extended for other extensive multibody dynamic systems.
Picture
full paper
0 Comments
Read More

Your comment will be posted after it is approved.


Leave a Reply.

Picture
JOURNAL OF COMPUTATIONAL and
​NONLINEAR DYNAMICS
COMPANION

QUICK LINKS

Submit Paper
Author Resources
Digital Collection
Indexing Information
Order Journal
Announcements and Call for Papers
Picture
Copyright © 2021 Journal of Computational and Nonlinear Dynamics