• Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements

Featured Articles

    Archives

    May 2025
    April 2025
    January 2025
    December 2024
    October 2024
    September 2024
    August 2024
    February 2024
    October 2023
    September 2023
    July 2023
    May 2023
    March 2023
    February 2023
    September 2022
    August 2022
    April 2022
    March 2022
    December 2021
    October 2021
    September 2021

    Categories

    All
    Actuators
    Approximation
    Artificial Neural Networks
    Attractors
    Bifurcation
    Boundary Conditions
    Boundary-value Problems
    Cables
    Contact
    Continuation Methods
    Control
    Co-simulation
    Co-simulation Interface
    Damping
    Delay Differential Equations
    Delays
    Density
    Displacement
    Dynamic Models
    Dynamics
    Dynamic Systems
    Eigenvalues
    Error Estimator
    Errors
    Exact Mode Shapes
    Exoskeleton Devices
    Friction
    Fuzzy Logic
    Galerkin Method
    Geometry
    Heat
    Heat Transfer
    Homoclinic Orbits
    Kinematics
    Limit Cycles
    Loaded Beam
    Machine Learning
    Manifolds
    Manipulators
    Midplane Stretching
    Multibody Dynamics
    Multibody Systems
    Multiphysics
    Multirate
    Noise
    Nonlinear Dynamical Systems
    Nonlinear Frequency
    Nonlinear Vibration
    Nonlinear Vibration Absorber
    NVA
    Origami
    Parallelization
    Parametrization
    Pendulum
    Perturbation Methods
    Probability
    Prostheses
    Railroad Dynamics
    Real-time Dynamics Simulation
    Reinforcement Learning
    Resonance
    Robots
    Ships
    Simulation
    Solver Coupling
    Space
    Stability
    Time Delay Systems
    Topology
    Variable Macro-step Size
    Vehicular Dynamics
    Vibration
    Waves

    RSS Feed

Back to Blog

Complex Modal Synthesis Method for Viscoelastic Flexible Multibody System Described by ANCF

1/24/2025

 
Zuqing Yu, Zhuo Liu, Yu Wang, and Qinglong Tian
J. Comput. Nonlinear Dynam. Mar 2025, 20(3): 031004
https://doi.org/10.1115/1.4067522

The viscoelastic dynamic model of flexible multibody coupled with large rotation and deformation can be described by the absolute nodal coordinate formulation (ANCF). However, with the increase of degrees-of-freedom, the computational cost of viscoelastic multibody systems will be very high. In addition, for nonproportionally viscoelastic flexible multibody systems, the orthogonality and superposition of complex modes only exist in the state space. In this investigation, a systematical procedure of model reduction method for viscoelastic flexible multibody systems described by ANCF is proposed based on the complex modal synthesis method. First, the whole motion process of the system is divided into a series of quasi-static equilibrium configurations. Then the dynamic equation is locally linearized based on the Taylor expansion to obtain the constant tangent stiffness matrix and damping matrix. The initial modes and modal coordinates need to be updated for each subinterval. A modal selection criterion based on the energy judgment is proposed to ensure the energy conservation and accuracy by the minimum number of truncations. Finally, three numerical examples are carried out as verification. Simulation results indicate that the method proposed procedure reduces the system scale and improves the computational efficiency under the premise of ensuring the simulation accuracy.
Picture
full paper
0 Comments
Read More

Your comment will be posted after it is approved.


Leave a Reply.

Picture
JOURNAL OF COMPUTATIONAL and
​NONLINEAR DYNAMICS
COMPANION

QUICK LINKS

Submit Paper
Author Resources
Digital Collection
Indexing Information
Order Journal
Announcements and Call for Papers
Picture
Copyright © 2021 Journal of Computational and Nonlinear Dynamics