• Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS
  • Home
  • About
  • Featured Articles
  • Editorial Team
  • Announcements

Featured Articles

    Archives

    April 2025
    January 2025
    December 2024
    October 2024
    September 2024
    August 2024
    February 2024
    October 2023
    September 2023
    July 2023
    May 2023
    March 2023
    February 2023
    September 2022
    August 2022
    April 2022
    March 2022
    December 2021
    October 2021
    September 2021

    Categories

    All
    Actuators
    Approximation
    Artificial Neural Networks
    Attractors
    Bifurcation
    Boundary Conditions
    Boundary-value Problems
    Cables
    Contact
    Continuation Methods
    Control
    Co-simulation
    Co-simulation Interface
    Damping
    Delay Differential Equations
    Delays
    Density
    Displacement
    Dynamic Models
    Dynamics
    Dynamic Systems
    Eigenvalues
    Error Estimator
    Errors
    Exact Mode Shapes
    Exoskeleton Devices
    Friction
    Fuzzy Logic
    Galerkin Method
    Geometry
    Heat
    Heat Transfer
    Homoclinic Orbits
    Kinematics
    Limit Cycles
    Loaded Beam
    Machine Learning
    Manifolds
    Manipulators
    Midplane Stretching
    Multibody Dynamics
    Multibody Systems
    Multiphysics
    Multirate
    Noise
    Nonlinear Dynamical Systems
    Nonlinear Frequency
    Nonlinear Vibration
    Nonlinear Vibration Absorber
    NVA
    Origami
    Parallelization
    Parametrization
    Pendulum
    Perturbation Methods
    Probability
    Prostheses
    Railroad Dynamics
    Real-time Dynamics Simulation
    Reinforcement Learning
    Resonance
    Robots
    Ships
    Simulation
    Solver Coupling
    Space
    Stability
    Time Delay Systems
    Topology
    Variable Macro-step Size
    Vehicular Dynamics
    Vibration
    Waves

    RSS Feed

Back to Blog

Bifurcation Analysis in Dynamical Systems Through Integration of Machine Learning and Dynamical Systems Theory

1/24/2025

 
Nami Mogharabin and Amin Ghadami
J. Comput. Nonlinear Dynam. Feb 2025, 20(2): 021006
https://doi.org/10.1115/1.4067297

​
Characterizing the nonlinear behavior of dynamical systems near the stability boundary is a critical step toward understanding, designing, and controlling systems prone to stability concerns. Traditional methods for bifurcation analysis in both experimental systems and large-dimensional models are often hindered either by the absence of an accurate model or by the analytical complexity involved. This paper presents a novel approach that combines the theoretical frameworks of nonlinear reduced-order modeling and stability analysis with advanced machine learning techniques to perform bifurcation analysis in dynamical systems. By focusing on a low-dimensional nonlinear invariant manifold, this work proposes a data-driven methodology that simplifies the process of bifurcation analysis in dynamical systems. The core of our approach lies in utilizing carefully designed neural networks to identify nonlinear transformations that map observation space into reduced manifold coordinates in its normal form where bifurcation analysis can be performed. The unique integration of analytical and data-driven approaches in the proposed method enables the learning of these transformations and the performance of bifurcation analysis with a limited number of trajectories. Therefore, this approach improves bifurcation analysis in model-less experimental systems and cost-sensitive high-fidelity simulations. The effectiveness of this approach is demonstrated across several examples.
Picture
full paper
0 Comments
Read More

Your comment will be posted after it is approved.


Leave a Reply.

Picture
JOURNAL OF COMPUTATIONAL and
​NONLINEAR DYNAMICS
COMPANION

QUICK LINKS

Submit Paper
Author Resources
Digital Collection
Indexing Information
Order Journal
Announcements and Call for Papers
Picture
Copyright © 2021 Journal of Computational and Nonlinear Dynamics