Archives
January 2025
Categories
All
|
Back to Blog
Praveen Kumar
J. Comput. Nonlinear Dynam. December 2024, 19(12): 121010. https://doi.org/10.1115/1.4066728 Nonlinear intermodal coupling based on internal resonances in MEMS resonators has advanced significantly over the past two decades for various real-world applications. In this study, we demonstrate the existence of various three-mode combination internal resonances between the first five flexural modes of electrostatically actuated flexible–flexible beams and dynamic modal interaction between three modes via internal resonance. We first calculate the natural frequencies of the beam as a function of the stiffnesses of the transverse and rotational springs of the flexible supports, utilizing both analytical formulation and finite element analysis (FEA). Following this, we identify six combination internal resonances among the first five modes and use applied DC voltage to validate the exactness of one commensurable internal resonance condition (ω2=ω5−ω4). Subsequently, we studied a detailed forced vibration analysis corresponding to this resonance condition by solving the five-mode coupled governing equations through numerical time integration and the method of multiple scales. The results compellingly exhibit three-mode intermodal coupling among the second, fourth, and fifth modes as a function of excitation amplitude and frequency. Alongside this, intriguing nonlinear phenomena such as threshold behavior, saturation phenomena, and autoparametric instability are observed. Finally, this paper provides a systematic methodology for investigating three-mode combination internal resonances and related nonlinear dynamics, offering significant insights that could be used in observing phonon or mechanical lasing phenomena in MEMS resonators.
0 Comments
Read More
Back to Blog
Mohammed F. Daqaq
J. Comput. Nonlinear Dynam. January 2025, 20(1): 014501. https://doi.org/10.1115/1.4066659 The symmetric monostable Duffing oscillator exhibits a superharmonic resonance of order three when excited harmonically at an excitation frequency that is one third its linear natural frequency. In this letter, it is shown that a certain class of periodic excitations can inherently quench the superharmonic resonance of order three. The Fourier series expansion of such excitations yields a harmonic component at the natural frequency whose magnitude can be properly tuned to completely quench the effect of the superharmonic component. Based on this understanding, the parameters of a piecewise periodic function and the modulus of the cosine Jacobi elliptic function are intentionally designed to passively suppress the superharmonic resonance. Such periodic functions can be used to replace single-frequency harmonic excitations whenever the effects of the superharmonic resonance are to be passively mitigated.
Back to Blog
Jean M. Souza, Luciana Loureiro S. Monteiro, Marcelo A. Savi
J. Comput. Nonlinear Dynam. December 2024, 19(12): 121005. https://doi.org/10.1115/1.4066469 Magnetic shape memory alloys (MSMAs) constitute a class of smart materials capable of exhibiting large magnetic field induced strain (MFIS) when subjected to magnetomechanical loadings. Two distinct mechanisms are responsible for the induced strain: martensitic variant reorientation and phase transformation. The martensitic reorientation is the most explored mechanism presenting the advantage to potential provide high-frequency actuation since it does not rely on phase transformation cycles. Despite its capabilities and potential dynamical applications, the dynamical behavior of MSMAs is not extensively explored in the literature that is usually focused on quasi-static behavior. Thereby, the objective of this work is to analyze the nonlinear dynamics of MSMAs. In this regard, an MSMA nonlinear oscillator is investigated, exploiting the system response under different bias magnetic field levels and actuation frequencies. A phenomenological model is employed to describe the MSMA magnetomechanical behavior. Numerical simulations are carried out using the operator split technique together with an iterative process and the fourth-order Runge–Kutta method. Results show that the application of a bias magnetic field can reduce the mean displacement of the system, increasing the oscillation amplitude. Furthermore, the period of oscillation can be modified, even achieving complex behaviors, including chaos. The potential use of MSMAs to dynamical systems is explored showing the possibility to provide adaptive behaviors. |