Archives
October 2024
Categories
All
|
Back to Blog
R. Ju, S. M. Yang, H. Ren, W. Fan, R. C. Ni, and P. Gu
J. Comput. Nonlinear Dynam. Dec 2024, 19(12): 121001 https://doi.org/10.1115/1.4066221 Steady-state rotary periodic responses of mechanisms lead to stress cycling in flexible structures or connecting joints, which in turn can result in structural fatigue. A general approach is developed to study rotary periodic solutions of rigid and flexible mechanisms with large spatial rotations based on the incremental harmonic balance (IHB) method. The challenge in analyzing such dynamic systems emanates from the noncommutativity of the spatial rotation and the nonsuperposition nature of the rotational coordinates. The generally used rotational coordinates, such as Euler angles, cannot be expanded into Fourier series, which prevents direct usage of the IHB method. To overcome the problem, the natural coordinates method and absolute nodal coordinate formulation (ANCF) are used herein for the dynamic modeling of the rigid and flexible bodies, respectively. The absolute positions and gradients are used as generalized coordinates, and rotational coordinates are naturally avoided. Equations of motions of the system are differential-algebraic equations (DAEs), and they are solved by the IHB method to obtain the steady-state rotary periodic solutions. The effectiveness of the proposed approach is verified by the simulation of rigid and flexible examples with spatial rotations. The approach is general and robust, and it has the potential to be further extended for other extensive multibody dynamic systems.
0 Comments
Read More
Back to Blog
Xu Dai, József Kövecses, and Marek Teichmann
J. Comput. Nonlinear Dynam. Nov 2024, 19(11): 111005 https://doi.org/10.1115/1.4066329 Contact simulation is essential in modeling mechanical systems. The contact models require accurate geometric information, which is determined through collision detection methods. When the mechanical system includes flexible bodies such as structural components, the dynamic formulation and collision detection can be more challenging, as the geometric boundaries of such components keep changing during the simulation. The floating frame of reference (FFR) formulation is suitable for flexible systems with small deformation. In this work, a stable and efficient dynamic simulation method is introduced for flexible systems with contact based on the FFR formulation. In addition, a curve-based collision detection method is proposed, which is more consistent with the dynamic formulation and more efficient than common existing collision detection methods. Case studies of flexible beams and multibody systems are employed to demonstrate the performance of the proposed dynamic simulation and collision detection methods. |